除列表的数据外,其他地区的极端温度有:2002年XX地区的43℃高温;2012年1月23日XX的-46.9℃低温;而号称三大火炉之首的XX近50年来的最高温度为42.3℃。
从以上的数据可以看到,南方地区极端温差较小,年平均气温较高;北方地区极端温差较大,年平均气温较低。其中极端温差最大的XX市,达到了73.3℃,最小的是XX市,只有30.6℃。为了计算的简单,极端温差取整数计算;升温/降温过程导致t2-t1 的值有正有负,但其绝对值不会变化,正负号仅代表是膨胀还是收缩。不影响计算结果;线性膨胀系数可查阅材料手册得到:钢质件a1=1.18×10-5/开。有了这些数据,可以算出单根桥架(长2m)在极端温差最大(74℃条件下)时的变形量△l。
l2=l1[1 +a1(t2-t1)] (4)
=2000×(1+1.18×10-5×74)
=2000+2000×1.18×10-5×74
=2001.75(㎜)
桥架的实际伸缩变形量△l为
△l= l2-l1 =1.75(㎜) (5)
通过上述的计算,得知2米的铁质桥架在温差74℃的范围内,其最大伸缩变形量为1.75㎜。在温差31℃的范围内,其最大伸缩变形量为0.73㎜。
(铝质桥架的“线性膨胀系数”a1=2.36×10-5/开,单根铝质桥架的理论伸缩长度也可进行计算。)
按照规范的要求,铁质桥架直线长度超过30米时必须做伸缩节,那么30米桥架的最大伸缩量将在11~26.3㎜之间(0.73×15~1.75㎜×15根)。
虽然大多数地区的实际温差不会达到74℃,而且安装时间也不会正好都在极端天气时进行,所以纯粹的伸长量或收缩量的概率极低,大多数情况下都是“热胀伸长量+冷缩量=伸缩变形量”,所以实际的热涨量或冷缩量都小于极端伸缩量。不同的地区因温差不同单根桥架的实际伸缩量会有差异。
3、存在的主要问题
室外桥架大多采用角钢、型钢、方钢、钢管等刚性支架固定;每根桥架(通常为2米)最大伸缩量达到0.73~1.75㎜,30米桥架的总伸缩量将达到11~26.3㎜。对于有刚性支架固定的桥架来说,由于桥架和支架间的刚性连接,桥架无法沿伸缩方向滑动,只能通过支架偏移或桥架起拱、侧移等形式抵消。当支架的强度足够大并且连接处无法滑动时,集中式伸缩节根本起不到预期的作用。室内桥架也存在相同的问题,室内小型水平桥架大部分采用圆钢吊杆+刚性防晃支架吊挂固定,由于圆钢的柔性可以适量偏移;而尺寸较大或负荷较重的水平线槽(或托盘)以及所有垂直桥架均采用角钢、型钢、方钢等刚性支、吊架螺栓固定,无法沿伸缩方向移动,集中设置的伸缩节也难以发挥预期的作用;有些梯架采用YB-2型压板固定,在压板较松的情况下伸缩状况可能稍好一点,但又会出现低端桥架应力集中的问题。
集中式伸缩节的设置,使每节桥架的温差伸缩量叠加,人为的放大每节桥架的伸缩位移,越邻近伸缩节桥架的位移量越大。桥架周期性温差伸缩不仅对固定支架产生影响,而且还影响层间防火封堵的严密性;更为严重的是放大后的伸缩量造成桥架内、外防火堵料错位(见图1),有效防火层厚度相对减小,影响防火封堵的效果,留下火灾隐患。
目前,为解决桥架伸缩问题同行们想了不少办法,比如在桥架固定点处沿伸缩方向开30㎜左右的长孔,采用圆头方颈螺栓固定,使桥架和支架保持半紧半松状态,保证桥架能小范围的滑动。这种办法是以牺牲桥架的封闭性和降低支架和桥架之间的接地可靠性换来的,而且由于垂直桥架直接承受重力,开长孔或松动压板会导致低端的桥架承受集中的外力,存在安全隐患。还有些单位在垂直线槽上加工弹簧或弹性支、挂件。现场加工不仅繁琐,质量也难以保证。
4.建议与措施
对于如何减少温差伸缩带来的影响,虽然可以在现有条件下采取一些补救措施,比如开发滑动支架、给支、吊件单独接地线,定制弹性或弹簧配件,增加防火封堵层的厚度等。这些措施只能解决单一的技术问题,综合效果不佳。笔者认为应将解决的思路从集中消除转变到分散消除的思路上来,从桥架本身做文章,让每节桥架都具有调节伸缩的功能,消除桥架的整体移位,借此解决桥架固定牢固与满足温差伸缩的矛盾。
按照上述的解决思路和前面的计算结果,我们知道每根桥架(通常为2米)的实际伸缩量(伸长量或收缩量)通常不会超过1.75㎜。如果在每根桥架的连接处预留不小于4㎜(>2*1.75㎜)的活动间隙,同时使连接板具有允许4㎜以上的微量活动的能力就可以解决这个问题。
根据这一想法,笔者设计了几个桥架配件,见图2~5。该配件与现在通用的桥架配件有些不同,主要体现在:
⑴ 将桥架的一端端口改为承插结构,保证线槽滑动时密封性并起到滑动导轨的作用。
⑵ 采用“V”型弹性连接板,保证两节桥架间的柔性连接和接地连续性。
⑶ 内承插接口桥架可以采用卡扣式连接板+接地线的方案,以节省安装材料和劳动力。对比的详细情况见表2。
通过理论计算和模型试验,改进后的桥架在刚性固定条件下可以满足桥架温差伸缩的要求,承插式接口加强了线槽接口部位的防火、密封性能。
5.两种桥架性能的比较
表2是普通桥架和改进后的桥架性能对比列表。
6.结论
笔者认为桥架温差伸缩量的分散消除比集中消除更有效、更安全,虽然会增加一些加工成本和制作难度,但现场安装更简单可靠;特别是卡口式连接方式做到少螺栓连接,节约安装成本和劳动力资源,值得大家继续研究。
7.结束语
桥架温差伸缩的问题,是一个重要而且永恒的话题,因此,桥架温差伸缩的理论研究和实践探索也不会就此停息,在这里作者只是作了一些有益的尝试,期待大家的共同参与。
220kV变电站初步设计
某10KV变电所的继电保护设计
某小城市热电厂电气部分毕业设计(含图纸)
火电厂继电保护及防雷工程毕业设计
获取更多500彩票网资讯